The City of Lancaster will host and co-own the green hydrogen production facility, according to a recent MOU inked with the SGH2. The SGH2 Lancaster plant will be able to produce up to 11,000 kg of green hydrogen per day, and 3.8 MM kg per year – nearly three times more than any other green hydrogen facility, built or under construction, anywhere in the world.
The facility will process 42,000 tons of recycled waste annually. The City of Lancaster will supply guaranteed feedstock of recyclables, and will save between $50 to $75 per ton in landfilling and landfill space costs. California’s largest owners and operators of hydrogen refueling stations (HRS) are in negotiation to purchase the plant’s output to supply current and future HRS to be built in the state over the next ten years.
Developed by NASA scientist Dr. Salvador Camacho and SGH2 CEO Robert T. Do, SGH2’s proprietary technology gasifies any kind of waste – from plastic to paper and from tires to textiles – to make hydrogen. The technology has been vetted and validated, technically and financially, by the US Export-Import Bank, Barclays and Deutsche Bank, and Shell New Energies’ gasification experts.
SGH2’s gasification technology uses high temperature (3500° to 4000° C) plasma- enhanced thermal catalytic conversion process optimized with oxygen-enriched gas, which results in the complete molecular dissociation of all hydrocarbons and the production of a very high quality, hydrogen-rich bio-syngas free of tar, soot and heavy metals. No other hydrogen-production technology can eliminate plastic as cleanly and as efficiently, if plastics are used or mixed in the feedstocks.
A consortium of global companies and institutions have joined with SGH2 and the City of Lancaster to develop and implement the Lancaster project, including: Fluor, Berkeley Lab, UC Berkeley, Thermosolv, Integrity Engineers, Millenium, HyetHydrogen, and Hexagon. Fluor will provide front-end engineering and design for the Lancaster facility. SGH2 will provide a complete performance guarantee of the Lancaster plant by issuing a total output guarantee of hydrogen production per year, underwritten by the largest reinsurance company in the world.
SGH2 is in negotiations to launch similar projects in France, Saudi Arabia, Ukraine, Greece, Japan, South Korea, Poland, Turkey, Russia, China, Brazil, Malaysia and Australia. SGH2’s stacked modular design is built for rapid scale and linear distributed expansion and lower capital costs. It does not depend on particular weather conditions, and does not require as much land as solar- and wind-based projects.
SGH2 anticipates breaking ground in Q1 2021, start-up and commissioning in Q4 2022, and full operations in Q1 2023. The Lancaster plant output will be used at hydrogen refueling stations across California for both light- and heavy-duty fuel cell vehicles. Unlike other green hydrogen production methods that depend on variable solar or wind energy, the SPEG process relies on a constant, year-round stream of recycled waste feedstocks, and therefore can produce hydrogen at scale more reliably.